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I  INTRODUCTION 

Analysis of RF leakage into a shielded cable system is circumscribed 

by the unsatisfactory description of apertures in seams., joints, and con- 

nectors through which leakage predominantly occurs.  Nevertheless, it is 
■ ■ 

convenient to describe the leakage process in terms of aperture constants 

called the electric and magnetic polarizabilities. Measured leakage data 

can then be approximated by a synthesis of leakage expressions with em- 

pirically deduced aperture constants. Leakage measurements are usually 

obtained at the end« of the cable system that may be removed from the 

aperture. Hence, another aspect of the cable-system leakage analysis 

is to determine the propagation of leakage effects within the cable system. 

A shielded cable system consists of many conductors within an electro- 

magnetic shield. Furthermore, in a cable system having a trunk with 

several branches, the number of conductors in the branches is not the 

same as the number in the trunk, and many conductors go from one end of 

a branch through tho trunk to the end of another branch, using only a 

portion of the cable system. Although such a cable system is to be 

evaluated for leakage, the mere complicated analysis of the effects of 

leakage to each conductor and of propagation through the cable system, 

using multiconductor-transmission-line analysis, does not appear to be 

justified at this time. For the purpose of developing measurement and 

evaluation methods it is sufficient to investigate one cable segment, 

where many separately insulated conductors are treated as a single inner 

conductor and the shield is treated as the outer conductor of a coaxia.1 

line. 

- 
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Electrical leakage through a small aperture is presented in terms 

of electric-dipole moments1* excited by electric fields perpendicular 

to the plane of the aperture, and magnetic-dipole moments excited by 

magnetic fields tangential to the plane of the aperture. The electric 

dipole moment is proportional to the electric polarizability, P, which 

depends on the dimensions of the aperture. The magnetic-dipole moment 

is proportional to the magnetic polarization, M, for a circular aperture, 

but in other apertures the magnetic-dipole moment is also a function of 

the shape of the aperture. Convenient orthogonal coordinates for the 

aperture are chosen and the magnetic polarizabilities are determined 

along these coordinates. The magnetic field is resolved into components 

along these coordinates, and the magnetic-dipole moments are proportional 

to components of the magnetic field and the magnetic polarizability along 

the coordinate directions. Table 1 lists the polarizabilities of a simple 

aperture in a plane wall of zero thickness. Generally, apertures will not 

assume these simple forms, and empirical expressions to characterize the 

apertures will be necessary to fit the measured results. The expressions 

in the table serve as a guide to the allocation of empirical polariz- 

abilities. 

The present analysis of leakage into a shielded cable begins with 

the shielded cable as the inner coaxial line of a double concentric 

coaxial line with aperture leakage occurring across the common conductor 

of the inner and the outer coaxial lines. The configuration was chosen 

because an equivalent-circuit representation for it is available" and is 

readily extendable to the analysis of a coaxial line with curront flowing 

on the txterior surface of the outer shield. The aperture leakage is 

* References are listed at the end of the report, 



Table 1 

VALUES OF THE POLAR USABILITIES OF SMAIX HOLES* 

»1 
M 

2 
P 

Circle of radius r 4    3 - r 
3 

J 2 
TT            ab c 

4    3 
3r 

TT           ab c 

2    3 
5r 

2 
TT ab 

3    E 

iab 

Jlid2 

16  " 

Ellipse1 of eccentricity  e = \/l -    [-) 

Long narrow ellipse (a » b) 

Slit* of width d and  length  i 

3 (1 -  «2)(F - E) 

.3 

3    |.(1   -   €2)F 

"       K2 

3'b 

- AJa 

16 

■-(¥)- 

* Mnrcuviiz (Rof. 2, p. 378), give* the polarisllities for a clrcunforentlal silt of width 

d and circumference 2TTR , when R„ la tho radius, as 
2       2 

1,1    .«  * 11 
TXiY 

, Y = 1.781, X = wavelength 

T v  and E are the complete elliptic integrals of the first and second kind, respectively: 

n/2 

▼U) dm 

*        f~     2   2 
0  vl - e sin ^ 

'72    / ~ 
E( c) - j  dtp Vl - t 

o 

2 
sin cp 

The polsrlzabillty M is for the magnetic field parallel to the major semlaxls a; M is 

for the field parallel to the minor semlaxls b. 

* The magnetic field la tranaverse to tho silt and constant along the length. 

Source: Ref. 1. 
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represented by a zero-impedance voltage source in series and a zero- 

admittance current source in shunt at the aperture location in the 

coaxial line. 

An analysis is presented, determining voltages anti currents propa- 

gated along the coaxial line from the aperture. For arbitrarily termi- 

nated coaxial lines, the results would bo cumbersome without the use c:f 

voltage-source and current-source Green's functions xo obtain a compact 

and more interpretable expression. The Green's functions are solutions 

of the transmission line with point sources located at the aperture;:. 

The results could be written into a computer program to determine 

the effect of aperture leakages across the terminals of a coaxial Line, 

excited by a current in the exterior shield. Because of the bundling of 

many conductors into u  single conductor such a computer program was not 

written, but the analysis suggested measurement methods to evaluate 

leakage effects i"i a cable system. 



II  APERTURE LEAKAGE AN» EQUIVALENT SOURCES 

A.   Aperture Coupling Between Two Concentric Coaxial Lines 

The equivalent circuit of the aperture coupling between two 

concentric coaxial line forms the basis for investigating leakage from 

external fields and currents into the coaxial line.  The equivalent cir- 

cuit and the values of the circuit parameters for infinitely th?n coupling 

walls are given by Marcnvitz3 for TEM modes, and are illustrated in Figure 1. 

(a) GENERAL V'EW 
SOURCE:  Raftrercc t. 

(b) i ONOITUDINAL VIEW (s) EQUIVALENT CIRCUIT 

TA-70BS-314 

FIGURE 1     APERTURE IN DOUBLE CONCENTRIC COAXIAL LINE. 

Equivalent-circui; parameters at the common central reference plane, 

p, in Figure 1 are given by 

R. 
2 In — 

,  R3 

R2 

(i) 

»at. 
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1 + 
i 2 I 3 

2XP.    An —-  \       &n T~ 2   "i v     v 

auP(Y   + Y') 
0 (T 

4TTCR2 £n r 
(2) 

2 2 
2\R    An — 

2 Bl 

2 2 
2TTCR    in — 

2        Rl 

(DM 
(3) 

Yo 

1  + 

R 

R. 

(4) 

B B "r 
a  1 

Y«        Ro 0 3 *■- 

(5) 

where 

c    =• Propagation velocity 

P    x Electric polarizability 

M    * Magnetic polarizability 

\   = Wavelength 

s Characteristic admittance of inner coaxial  line 

= Characteristic admittance of outer coaxial  line. 

6 

^*k__ 
i^asa 



The circuit is sufficiently complicated so that it is difficult both 

to describe and to apply. However, if the circuit is considered in terms 

of zero-impedance voltage and zero-admittance current generators, applica- 

bility becomes a little more apparent. Although the equivalent circuit 

is fcr coupling through an infinitely thin aperture, a rndius R is intro- 

duced for the inner radius of the outer coaxial line, in order to consider 

the effect of finite thickness later on.  Since H   « R', we could use 

either R or R' in the values for the equivalent-circuit parameters, where 
2    2 

the choice of R or R' depends on its appropriateness in the expression. 

The equivalent circuit with current and voltage designation is illustrated 

in Figure 2. 

TA-79SP-315 

FIGURE 2 DESIGNATION OF VOLTAGES AND CURRENTS 

Equivalent zero-impedance voltage and zero-admittarce current genera- 

tors enable the leaxages coupled into transmission lines to be r?presented 

by uncoupled transmission lines with generator so;. *ces simulating the 

coupled quantities. The following current and voltage expressions are 

obtained for reference in later sections. The current through Y = -JB 
a    a 

connected across voltage, V , is, f/om Eq. (2): 

= -JB V, = I   + I 
a 1     alO alJ' 

(6) 



where 

J(iiPYn 

alO 
2 2 

4ncRr in — 
rvi (7) 

JUJPY, 

W Tvi 
4TTCR^ £n -2 

(8) 

Similarly, from Eq. (3), with voltage v' acros? Y = -JB., 

JUJPY, JouPY7, 

dl 
■JB V J d 1 2 o 

4TTVR    in -—- 
2 » 

V 
R.    1 

1     -V' 
R-    1 

A o'2     . 3 
4TTCR 2 £n F 

XalO + Xal0' 

(9) 

from Eq. (2) with voltage V across Y ■ -JB , 
2 a a 

JiuPY„ ju)pyf 

a 2 TV 
2 9 2 2 

4TTCR„ in -^ 4rrr.R„ in —- 
2        R 2        R 

V 
R.    2 a20 a20 

(10) 

and from Eq. (5) with voltage v' across Y = -JB , 

i'      m    -JB v' 
d2 J d 2 

JUJPY, JwPY 

A T>'2      . "3 4ncR„    in —T 
2 \ 

— V 
R_    2 

0 / 

,     s   » 
4TTVT      in ~-r 

2 

d20 +    d20' (11) 

•        •      tt Sft^i 



The current, I , flowing through Y 
b b 

.jBb is 

v '.i**1;-1«) = !bi + i;i (12) 

The equivalent zero-impedance voltage generator, V. , obtained as the 
b 

voltage across Y    = -B  ,   when current I     is flowing throi-gh it,   is 
b b b 

b Ju)M 

2TTCY R    in — 
0 2 R 

2 

J«l)MZ, JuuMZ, 

o    „2   i    "2 
2TTCR    *n — 

2 Rl 

—  I       + 
R_    bl Ro    bl 

2 2 
2TTCR„ in —- 

2        Rl 

(13) 

The equivalent zero-admittance current generator, I , associated with 
c 

Y = JB is the current flowing through Y = B , when the voltage 
c    c c   c 
-V + V is impressed across it, and is given as 

. ic - JBC(-V1 + V;) 
JouP 
2rrc 

R>r 2      Ri 

T <-V +  ?— v' 
R      1 

o'2   f 2 

cl cl 
(14) 

Tho voltages and currents at  the aperture are related by 

I    =    Y V 
P 

(15) 
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whore Y is the admittance of the line at z = p, Thus, the magnetic and 
P 

electric fields at the aperture are related to voltages and currents at 

the aperture by 

where 

2TTR 

I    =    2TTR H (R  )     ■    —T~ E (R  )     e    Y V (16) 
2 cpv   2 £       B,    2 p 

2TTR' 

l'    =    ZTTR'H (R*)     =    ---± E(R')     =    YV (17) 
2 tp    2 C       B    2' p 

/u./e 

B.  Aperture Leakage to the Inner Coaxial Line 

Leakage to the inner coaxial line is determined by considering only 

the outer voltage V , and current I , at the aperture.  When the aperture 

is small, the voltages and currents coupled into the inner line will be 

a very small fraction of the driving voltage or current, and therefore 

its contribution being secondary by comparison may be neglected.  Then 

from the Eq. (13), zero-impedance voltage source, V , becomes 
b 

JouM 
V   a  V    a  — 
b    bl R 

2ncY R Xn — 
0 2   R 

(i;-i^), (is) 

and from Eq. (14), sines V » V , the zero-admittance current source, 

I , becomes 
c 

10 



cl 

ju;?Y, 

2TTCR^    In-^ 

T"l (19) 

But   from Eq.   (9), 

dl 
JU)P 

4ncR22 'n F 

(Y     +  Y  )v' v o      (r l 

(20) 

A circularly uniform current flowing on tho outer shield of a single 

coaxial cable is obtained by letting R , the radius of the outer cylin- 

drical tube, approach infinity in Eq. (20).  This decreases I., so that 
dl 

eventually 

I'ill « I.;I (Zl) 

and consequently i' may be neglected.  Since 
dl 

2TT 2H 

0 R0 Ro 2 2 
C *n ~    iicin- 

(22) 

the zero-impedance voltage source given by Eq. (18), is simplified to 

11 



2  2     1 

4n R„ 
2 

(2J) 

The zero-admittance current  source,   I    of Eq.   (19),  wich the relation 

I' ■ Y V  ,   becomes 
1        P 1 

ju)P 
Yn 

0 T' 

,2 3    p 
2TTCR'    in-7    P 

2 R2 

(24) 

and, with Er,, (l), becomes 

JtuP 0 T' 

2 ~"2   "n 
2trcR„ in — 

2 Ra 

If Y = Y . then i' is the current flowing in the positive z direc- 
p   0      1 

tlcn without reflection, so that 

„    „2  ,      2 
2TTCR„ in —- 

2 Ri 

J» uPY 
 2 |' 

x   2o2 1 4TT R_ 
(25) 

If there is reflection, I would have a value less than twice the value 
c 

given by the equation. Since R is not present in these expressions, 

12 
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the expression is applicable to the case of I  flowing on the exterior 

surface or a coaxial line. 

The equivalent generator representation obtained through a series 

oi approximations for small-aperture coupling gives the result depicted 

in Figure 3. 

v. 

O "(~4 — - —— — C 

i • p * • L 
TA-/MB-316 

* 

FIGURE 3    EQUIVALENT SOURCE REPRESENTATION OF APERTURE 

The terminals represent the ends of the inner coaxial line and the genera- 

tors represent the coupled zero-impedance voltage and zero-admittance 

current sources where the transfer impedance Z  is defined by 
P 

= V Z I' 
P 1 A    V2   1 

4nR2 

(26) 

and the transfer function T is defined by 
P 

T r 
P i 

JU) MPY 
 2 i' 

2 ,2  1 
4TT R_ 

(27) 

Z and T are for coupling holes in infinitely thin walls, but in prae- 
P     P 
tical applications finite wall thickness must be considered, as dis- 

cussed in the next section. 
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C.  Wall-Thickness Effect for Small Holes 

Finite wall thickness reduces the coupling effect and hence decreases 

the value of the transfer Impedance and function. The electric polariza- 

bility, P, in the equivalent current generator, T , determines the magni- 
s 

tude of the lowest longitudinal E field mode in the aperture, and the 

magnetic polarizability, M, determines the magnitude of the lowest longi- 

tudinal H field mode in the aperture. The lowest E and H modes have 

wavelengths longer than the cutoff wavelength, so the fields are attenu- 

ated in the aperture. For wall thickness T = R' - R , the attenuation 
- 2   2 -vr 

factor is given by e   where y  is tht complex-mode propagation constant 

given by 

Y    * ■yftTI 

■Mr¥) =   or + jß (28) 

where \ is the cutoff wavelength nf the mode.  Including the wall- 

thickness factor, the expressions for transfer impedance and transfer 

function become 

z m    Juu uMe 

P 

-V T 
H 

2 ,2 
4TT R' 

(29) 
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and 

ju»iPY e  TE 

".  2   ,?.~~ 
4rr R 

(30) 

where 

Y  - Complex propagation factor for the lowest H mode 
H 

V  = Complex propagation factor for the lowest E  mode. 
ft 

D.  Wall Thickness Effect for Circumferential Slit 

The effect of thickness, T « R' - R'ifor the circumferential slit 
2   2 

in the concentric conductor between the inner and outer coaxial cable is 

obtained by considering the slit as a radial waveguide as shown in Figure 4. 

2P, 

2R„ 

]  i s 

i czzn 
HbK 

i • 0 TA-7OT8-317 

FIGURE 4 CIRCUMFERENTIAL SLIT 

Since the slit is excited by a radial electric field and a circular mag- 

netic field, an Ert, mode and not the lowest E  mode is excited in the 
01 00 

slit.  The electric and magnetic fields in the slit are given by Marcu- 

vitz (Ref. 2, p. 90) as 

15 



E      = 
z 

2V 
1              TT 

- —— cos r z b            b » H 
z 

- 0 

E0 = 
0 i H = 

l' 
1                 ,T 

——   COS —   7 
2nr          b 

E      = 
r 

z 

(31) 

where the mode voltages and currents satisfy the transmission-line 

equations 

dV 
_1 
dr 

■>\< «i 

(32) 

where 

dl 
_JL 
dr 

•jvi»;' 

*; 

L 
4nr     k 

/ (if ■ >\IW7E (33) 

2b 
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The  second-order differential  equations for v'  and   i'  become 

dV 
Id 1        2     , 
 r   + K. V.    =    0 
r dr       dr 11 

(SI) 

d   1       1 2     / 
r + k    V'    =    0 

dr r   dr 11 

The usual method of expressing solutions to the above equations is to 

solve for V"' in terms of modified Bessel's or Hankel's function and use 

the first-order transmission-line equation to obtain a solution for I , 

The solution for I  is needed to determine propagation behavior for E 
1 r 

and H . 

An approximate and simpler treatment for cylinders with thin walls 

is possible since the r-variation in the second-order differential equa- 

tion is small so that r may be set equal to the outer radius, R , of the 

cylinder, but I and V are still functions of r.  Then the second-order 

differential equations become 

d  T'  U
2
 T' 

"2 \  + kl \ 
dr 

= 0 (35) 

jk r     -Jk r 
with solutions of the form e 1 and e  1  for waves propagating in the 

direction of decreasing and increasing r, respectively.  Since we are 

interested in leakage into the tubular conouctor or in the direction of 

decreasing r,   the amplitude-variation factor to allow for the thickness, 

T = R. R2,   is 

17 



■jk,T 
(36) 

E.  Lumped-Circuit Model of Connector Leakage 

The lumped-circuit model of connector leakage assumes that the 

electrical lengths associated with the connectors are small, so that 

lumped-circuit considerations are adequate in the determination of the 

current exciting the aperture. A circumferential silt in the connector 

is considered to be the aperture.  If metal-to-metal contact exists in 

the circumferential slit, then the space between contacts could be modeled 

as a circular, elliptical, or rectangular aperture. The aperture case it- 

treated in the next section. The purpose of these treatments is to sug- 

gest models that may be used to represent experimental results.  In all 

cases, the model oversimp?ifies the actual field configuration in the 

space between threads and bushing of the connector. 

A longitudinal cross section of a connector model is illustrated in 

Figure 5. At the connector, the model shows that the outer conductor of 

the coaxial lines has a circumferential slit with gap width, b, at z = ,.•. 

The schematic illustrates tne admittances y , y , and y , existing 
12  13      23 

between components of a connector, where 1 refers to the outer coaxial 

cable connector on the left, 2 refers to the outer coaxial cable connector 

on the right; and 3 refers to the connector bushing that reduce«? the gap, 

b, between the left and right coaxial line. Admittances Y , Y , and 

Y  or their reciprocal, Impedances Z  , Z , and Z , are values 
23 12  13      23 

measured between the respective components of the connector by connecting 

18 
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—ilk- " 
TA-7MS-318 

FIGURE 5 CONNECTOR MODEL 

an admit anco or impedance meter. The relationships between measured 

admittances and admittances between components of a connector are: 

where 

2 y!3 + : r 23 

- K 
13 yi2 

+ y '23 

K 
'23    y  + y 

'12  '13 

(37) 

(38) 

(39) 

K    =    yi2y!3 +  yi2y23 +  y!3y23 
(40) 
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Solving for jr , y , and y  in terma of the measured values gives 
12  13      23 

/  = - (Z  + z  - z ) 
'l2    2 V 13   23   12; 

"(41) 

'13 
- (z  + z - z ) 
2 V 12   23   137 

(42) 

y23 = 2  (Z12 + Z13 " "23)   * 
(43) 

If a current I flows on the outer surface of the coaxial line, a 

portion I  of the current flows across admittance y , and thereby 

couple« through the circumferential slit of gap, b, into tha coaxial line. 

Now, 

1 " *U  + J13 and !13 " '» 
(44) 

and since the voltage across y  is equai to the voltage across y  and 

v , we have that 
23 

lJ* 2-1 lK}  (y" + V™]       • 
y!2 = y y 'l3'23 

(45) 

The fraction of the current I flowing through y  in terms of measured 

Impedances is 

J 
12 
I 

22     (Z       +  Z       -   Z     ) 
12v   13        32 12J 

(z     + z     + z   )' V   12        13        23y 

2 2 2 
v   12 13        23 

(46) 

2P 
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Results of measurements on connectors indicate that Z.. z„„ and 
12   13, 

Z have essentially zero resistance for frequencies to 100 MHz. Hence, 

the conclusion is that metallic contact exists between Parts 1 and 2 and 

between Parts 2 and 3 (see Figure 5), so that leakage through these con- 

nectors must be due to aperture coupling. 

F.  Waveguide Model of Connector Leakage 

The waveguide model of connector leakage utilizes the principle 

of aperture leakage through thick walls. Figure 6 illustrates waveguides 

formed in the connector because of metallic contact between the connector 

bushing and the connector, which functions as an extension of the coaxial 

line. Three arc-shaped waveguides are Illustrated with a cross section 

of mean width w , w , and w , and height h = R - R', and with length 1 . 
12      3 3   2 p 

lllpli^Mll 
SECTION    A-A 

TA-7MS-319 

FIGURE 6 WAVEGUIDE MODEL OF CONNECTOR 

The length, 1 , is short enough so that the current flowing on the 
P 

outer aperture surface of the waveguide may be assumed to be the current 

at z . However, the length, i  , is retained to compute the attenuation 
P P 

through the waveguide and becomes the aperture wall thickness to account 

for the wall-thickness factor. 
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The dlpole moments, excised in the connector waveguide model, is 

slightly different from ape tores in the coaxial surface slice the aper- 

tures are in a plane surface perpendicular to the circular coaxial surface. 

The magnetiC-dipole moment excited by current on the outer surface of the 

coaxial line is essentially due to the magnetic field in line with the 

long (major) axis of the aperture. The electric-dipole moment would be 

smaller since the electric field perpendicular to the aperture would be 

smaller than that normally existing on the surface of the coaxial line. 

It is evident that many types of leakage behavior could be approxi- 

mated with appropriate choices of waveguide cross sections and lengths. 

Tu*,  uijcusslon ci leakage provides a semi-qu&ntltlve description of the 

connector leakage process, even though physical description of the aper- 

tures in a connector is not adequate to permit a more thorough analytical 

treatment. 
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Ill  TRANSMISSION-LINE PROPAGATION OF LEAKAGES 

This section discusses a method for treating transmission lines 

excited by aperture leakage that can be represented by zero-impedance 

series voltage and zero-admittance shunt-current sources. The resulting 

expressions would be unwieldy end ur.inf. -native unless voltage- and current- 

source Green'? functions are used. Conseqrently, this method is reviewed 

and parameters are defined to enable the final results to he usable. 

A.  Uniform Trar.smlsslon Line with Sources 

The unifor"i-transmission-line equations with e zero-impedance voltage 

source, V , in series along the line and a zero-admittance current source 
s 

I shunted across the line are given by 
s 

dV \ 
— = -ZI + V  1 
dz si 

?■-"♦■») dz s / 

where Z and Y Are th« distributed series impedance and shunt admittance 

per unit length of line. 

The second-order differential equation in V or I is obtained by 

differentiating the equations and making appropriate substitution.  How- 

ever, differentiation of the sources may be avoided by using the linearity 

* Reference 3, pp. 102-111, 
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property of the equations and forming two sets of two equation as 

follows: 

dV 

dz 
■ -ZI  + V 

(48) 

dl 

dz 
= -YV 

dV 

dz 
a  -ZI 

(49) 

dl 

dz 
+ -YV + I 

where the superscript V i>,  associated with voltage and current from voltage 

source V , with the current source I  = 0. Conversely, the superscript I 
s s 

is associated with voltage and current from current source I .with the 

voltage source V ■ 0. Sunming the two sets of equations gives 
8 

d(V + V .)     „,V   I, 

dz s 

(fcO) 

dz 

V   I 
-Y;V + V ) + I 

which are the original equations, In which 

V   I 
V  » V + V 

I . Iv + Ix 

24 
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The second-oroer differential equations obtained  from Eqs.   (48)   and 

(49)  are 

2 V 
d  I 2 V 
  - V  I       =    -YV 
dz 

where 

2  I 
d V 

dz 

2   I 
Y V -ZI 

(52) 

= vz7 (S3) 

The solutions of the differential equations driven by the zero- 

impedance voltage source V are obtained by iirst considering the case 
s 

in which a zero-impedance unity point voltage source is located at z = z   , 

since this solution is generally easier to obtain. The desired solution 

is then obtained by superposition. The unit point voltage source is 

described by 

V  = 6(z - z') 
s 

(54) 

and th«? i'orcing function becomes -Y6(z - z ).  If the forcing function 

were 6(z - z ), the Green's function cp (z,z') would satisfy the second- 
C # 

order differential equation 

2  I 
dtPC        2 1 
— -V<PG 
dz 

-    6(z ■ ') (55) 
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The forcing function, -Y*(z - z'), gives the voltage-source Green's 

function 

I^z.z')  = -Ycp*(z,z') (56) 
G G 

which satisfies the second-order differential equation. 

V 
The solution, I , to the driving function, YV , results from super- 

S 
position of currents due to voltage sources at different locations along 

the line, and is 

IV(z) - T V (z')l!(* - z')dz'  . (57) 
*■  8    G 

V 
The solution for voltage, V , is found from 

">' • -5-i— (58) 

with the result that 

/w,V VV(z)  « /Vg(z')V^(z,z')dz'   . (59) 

Similarly, the solutions to 'he zero-admittance current source, I , 
s 

shunted across the line are 

VX(z)  * JlB(l>J(«,s')dl (60) 

IX(z)  - JlB(z')I^(z,3')dz' (61) 
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where the current-source Green's functions are 

v*<«.0   = -*£(».«') (62) 

and 

IG(z.z ) Z   dz 
(63) 

V  V   I      I 
The solutions V , I , V , and I are In terms of voltage-source and 

current-source Green's functions, which are computed In the following 

sections. 

B.  Arbitrarily Terminated Uniform Transmission Line 

This section reviews the transmission-line definitions and solutions 

to provide continuity with later sections where point driving sources are 

introduced to satisfy boundary conditions. The uniform transmission line 

of characteristic impedance Z and length L is terminated in Impedances 

Z = 1/Y at z = 0 and Z„ » 1/Y„ at z = L. A zero-impedance series- 
11 2     2 

voltage or zero-admittance shunt-current source discontinuity will be 

introduced at z = z' in later sections. Consequently, the line is di- 

vided into the two source-free lines illustrated in Figure 7, where the 

line from z = 0 to z = Z is called Region 1 and the line from z = z to 

z = L is called Region 2. The voltage, V , and current, I , in Region 1 

will be expressed in terms of variables and parameters occurring in 

Region 1. Similarly, the voltage V, and current, I , in Region 2 will 

be expressed in terms of variables and parameters occurring In Region 2. 
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JL ■ '   ■   ■■'■■' —f 

REGION 1              i            REGION 2 
zi 

z  ■ -i            1          Z   - 1 22 

T V                 1               o Yo T 
i • 0 i • i' z ■ L 

l.lz) 1,(1')                 12U') I3(Z) 

JL 
_ » 

JL f    REGION 1 ~T    T REQION 2     t 

zi V^z) V,««')                V2(i*l Vj(zl h 

T        1 _i       L 1 T 
z * 0                    * I » *'                 z « z' z • L 

TA-790B-320 

FIGURE 7 DECOMPOSITION OF TRANSMISSION LINE 

In Region 1, the voltage and current may be expressed In terms of 

the forward (positive z direction) and reverse (negative z direction) 

propagating voltages, V  and V , and currents, I  and I , evaluated 

at z -  0 to give 

V,(z) = V, eV* + V, e-V* 
1       lr     If 

(64) 

I At)   = I, eVz ♦ i e-V« 
1       lr     If 

(65) 

From 

Y dz 'y-(Iire  - llte     ) 
(67) 

and equating coefficients of the exponential terms in the expression for 

V , we have 

lr 
v 
y'lr 

lr 
(68) 
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and,similarly, 

If 
If 

(69) 

Consequently, the current equation may be written as 

ijU) - Y
0
("vlr

eYz + vife"YZ' . • (70) 

At z = 0, the voltage developed across Z by I (0) is in opposite 

polarity to the voltage convention along the line. Hence, 

v^o) 

ijW 

Vlr + Vlf 
Y0("Vlr + V 

1 + P, 
=  Z 

0 (1 - Pj) 
(71) 

whore  the voltage reflection coefficient  is o.  = V    A    .   since V,     at 

z = 0 is the incident voltage from a soure« at z = z   . 

expressed in terms of  impedances and admittances in the usual way 

p    becomes 

Zl-Z0 YQ-Y1 

1        zi * zo        Yo + Yi 
(72) 

The voltage and current In Region 1 is now written as 

V>)     =    V,   eYi(l  + ?y7NZ) 
1 lr 1 

:?3) 

i    »  -y v  t    i • p i 
lv 0 lr       v 1 

(74) 
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where V  Is still an undetermined parameter, 
lr 

Similarly, in Region 2, the voltages and currents are given by 

V2(z)  = V2re
V* ♦ V2fe"VZ (75) 

I„(«)  - I0 e
YZ + 1 e'Yz 

2       2r      2f 

■ vJ-V, eYZ + V0 e"
YZ (76) 

0\ 2r      2f   / 

where V  , V , I  , and I  are forward and reverse propagating voltages 
2f  2r  2f      2r 

and currents evaluated at z s 0 if Region 2 extends back to z = 0, without 

intermediate sources. At z = L, the impedance Z becomes related to the 

voltage-reflection coefficient, P , which is given by the ratio of the 

\L -VL 
reflected voltage, V e  , to the incident voltage, V e   , since 

„      -YL/V2r    ZYL , \ 

,. vii. " fa: )  , in. ."> 
YoV     |-r-' \       2f / 

Solving for 0 gives 

Z  - Z Y - Y V 
2 0     0 2 2r 2YL             ,  . 

P  »  '■ a ——^—— a —— e               178) 
2      Zo + Z« Yo + Yo Vo- 2   0 0   2 2f 
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"V 

Then, in terms of the undetermined parameter, V , the voltages and 
mX 

currents in Region 2 may be written as 

/   , -Vz| 2V(z-L)| 
V2(z;     -    V2fe        1+P2e (79) 

/   , -Yzi 2V(z-L) i2(z) ■ v2f
e L1-v (80) 

The undetermined parameters V  end V  are determined in terms of 
lr     2f 

/ 
voltage or current source introduced at z - z  ,  and thereby solutions 

are obtained for voltages and currents in Regions 1 and 2 in terms of 

voltage- and current-source Green's functions. 

C.  Transmission Llr<? with geries-Voltage Source—Voltage-Source 

Green's Function 

A zero-impedance point voltage source V (z ) in series with the 
s 

I i 'if    if    7       7     \ >-■■   rionlflorl   in   Fleiirf   R.     Thr   hnundirv  ronrfttions   nt 

z = z    and  their relationships  to transmission-line parameters in 

V X 
REGION 1 REGION 2 

i - 0 i • I' i ■ L 

TA-799B-321 

FIGURE 8    POINT SERIES-VOLTAGE SOURCE 
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Regions 1 and 2 LEqs. (73), (74), (79), and (tJO)] are given l, 

vj(«') - vj(.') Vs(x') 

„V -Yz I,  r  2V V    I1 + V T,       «     2V(z'-L)l       „V    Yz'/ „      *2Y*' \ 
L1+P2e J-Vlre      \1+V j 

£(■')  - ij(i')     =    0 

T        a    av(z'-L)l V    Yz7        r     -2Yz'\ vL^I-v2^ 

V      V 
Solving for V  and V  gives 

lr    2f 

-Yz 
1 - P 

2Y(Z'-L)] 

26      J 
lr (-v/T  8 ♦V) 

(81) 

(82) 

Yz 

2f 

1 - V* ) /( , rr- V_(z ) 

f1 - •»•,•-" ) ' 
(83) 

The Green's-function solution for Regions 1 and 2 is obtained by 

/ V      v 
setting V (z ) = 1 and substituting the expressior for V  and V 

• lr    2f 
into Eqs. (73), (74), (79), and (3) for voltages and currents to give, 

in Region 1, where z < z , 

V—'» 
L'-v '   J ry(,..,',     .v(.„') 
:(»-lV'm) 

(84) 
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!>..') °l 2 i 
'(-'.Vl 

[.V(—'».PI.-
V(W''] (85) 

and in Region 2,  where z > z     , 

V—) - 
(x-v-') 

.(x - f,P/-) [• •\(z-z )     V(z+z 
+ P e 

2 
.'-2LJ1 

(86) 

!>..')  - 
f-v*') 
2(1"piV" 

2YL 
_ L-V(«-«') _p eY(z+z'-2L)j (8V) 

D.  Transmission Line with Shunt-Current Source—Current-Source 

Green's Function 

A zero-admittance point current source, I (z ;, in shunt with the 
s 

line at .5 - z is depicted in Figure 9. The boundary condition« at z - z 

and tneir relationships to transmission-line parameters in Regions 1 and 2 

J: 
REGION 1 REGION 2    'z- 

x • 0 t  » L 
TA-799S-322 

FIGURE 9    POINT SHUNT-CURRENT SOURCE 
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fe».   (73),   (74),   (79),  and  (80)] are given by 

*J(0 -vj(.')   =   0 

V'l-V'^'i-V^'^P^') 

«,V)  ~  l\(z') !.(.') 

■.^■vwc-i-/>'(. v^ 

Sol»l„8 for vjr «nd vj   ,i»„ 

(88) 

(89) 

, «ÄI.(»V 
v-     3   -ÜJL 

(90) 
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The Green's-function solution for Regions 1 and 2 is obtained by 

setting I (z ) = 1 and substituting t'te expression for V  Into Eqs. (73), 
s lr 

(74), (.79), and (80) for voltages and currents to give, ir. Region 1, where 

vJG(.,z') 

'*<«■■'> 

£i 2        I |Y(Z-Z')     -Yt-.'jl 
(91) 

(92) 

and, in Region 2, where z > / 

<£,(...') . (1 -P -»«1 

1 - p p e ^
h   L 2 

12 J 
(93) 

£<■.■'>  ' fr + V"*" j  r. 6  -2vlkY(Z"2')-P2e
Y^/-^] (94) 
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E.  Transmission Lines Terminated in Characteristic Impedance 

In lines terminated in characteristic impedances, 

(95) 

and the Green's functions given by Eqs.   (84)  through  (£7)  and  (91)  through 

(94)  simplify to 

">•■'>    - 
1     Y(z-z') 
2° z < z 

V  ,        /, 
V    (..■ ) 

0  Y(z-z') 
=       —- A 

1    -Y(ie-z') 
26 

z < z 

z > z 

(«•) 

'>■■'> 
*0    -V(z-z') z > z 

»;,<...'> 
'o   V(z-z') 

z > z 

O"'0 

V
JG'"'''> 

1   Y(z-z') 
2* 

0    -Y(z-z   ) 
3        ■>• A 

z < z 

z > z 

(97) 

I   ,       /> 1    -Y(z-z') 
I2G(x,z  )    -   -e z > z 

<6 
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The above Green's functions represent voltage or current propagated 

from the unit voltage or current source without reflection from the 

character!uic impedance terminations. 

F.  Coaxial-Cable Leakage 

Analysis of leakage into a coaxial cable due to a uniformly dis- 

tributed transfer impedar.ee such as in braided exterior shields, and to 

loealiz' i  leakage points from apertures at joints, cracks, and holes in 

the shield, is based on the discussion presented in previous sections. 

The coaxial cable is placed along the z-«.:is with one end terminated in 

impedance Z at z = 0, and at the other end in impedance Z at z = L. 

To generalize the analysis slightly, the line is subdivided into 

N segments with z = 0 < z < z  . . . < z ■ L, and in the segment n, 

lying between z   and z , there are N aperture leakage points. A line 
n-1     n n 

in which leakage occurs only in a segment from z   to z is considered 
n-1    n 

A current I (z) is assumed to flow along the outside surface of the 

ccaxii.1 line. The zero-impedance voltage and zero-admittance curren'. 

sources for small holes and joints in segment n is written as 

n 

V     ft) 
sp I EZ (z)6'z - z )l'(z) 

P        "P 
(98) 

p=l 

I  (z)  =  > T («)6(.-t )l'(z) 
sp      / J   p       np 

» 

pel 

where z  determines the location of t! e ptn aperture in segment n. 
np 
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°n TQ( describe 
Distribted leakage impedance Z ,  and transfer functi 

0 u 
the leakage properties of many perforations per unit length with each 

perforations treated as an aperture; out fach unit length of line shows 

the same properties, so that Z and T are independent of z. The dis- 

tributed zero-impedance voltage and zero-admittance current sources are 
expressed as 

VsD^  " V'W 

X.D(,)  * V'<«) 

(100) 

(101) 

between z . and z . The composite sourcfi then become n-1     n 

\(*)    -    Vap(z)  ♦ V9D(Z) 

f i*-rf p        np    i 
|.P=1 

l'(«) (102) 

and 

: (z) = 
s 

n 

LP»I 

^(■W* - z  ) + np I" ' z ; (103) 

* Reference 4 gives an exampl e of z 
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^r*n 

The voltages and currents along the line may be obtained by 

substituting V (z) and 1 (2) from Eqs. (102) and (103) into the super - 
s        s 

position integral [Eqs. (57), (59), (60), and (61)j.  The solutions have 

three forms, depending on whether the solution is in Region a where 
n 

z < z   , Region n where z   s z s; z , or Region b where z > z .  The 
n-l n-1       n n n 

solutions are for Region a , where z < z    , 
n n-l 

n n 

'(■)     «    >    Z (1    )/(«,!     )''(z    )+Z      /      l'(«')vY_(«,*')d»' 
J^J   p    np    IG        np np ü J IG 
P=l n-l (104) 

n n 

1V(Z)    * £V%XG(z'Znp)lVznp}  + ZD /     I V>I>..')*' 
PS1 Vl 105) 

V*(z) VV  (z    .)v' (■,«     )l' ,       „       /   I'(«')V?_ /,   p    np    IG        np      (z    )  + T      I IG 
(z,z  )dz 

n-l (106) 

n n 

l\z)     *   Y\ (z    )I   .(1,«    )l'(i     )+T      /"     l'(z')lIr(z,z')dz'     . 
X»^  p    np    10        np np D   / IG 

P-1 Vl (107) 

39 

a 



For Region b  ,  where z > z     ,  equations are identical to those ob- 
n n 

tained for Region an except that the subscript  1 is changed to 2 so that 
VVI I VVI I 

V    .   I     , V    ,  and I      become V    ,   I    , V    ,  and I 
IG'     IG'     IG IG 2G'     2G'     2G' 2G 

For Region n,  where z    . £ z * z       , 
n-1 n 

XM>    p    np    10        np np D 10 
pap 

(108) 

p -1 1 

5=1 Vi 

N 

VX(z) V*np)V^'%p)l/(znp)+TD/   iV*^...')*' 

(109) 

V1 

+VT(z    )V*(z,z    )l'(z    )+T    /      l'(«')v'(i,i')dz' L<     p    np    2G        np np D / 2G 
P=l n-1 

where p is the first leakage point in the segment between z and z . 
* V       I " 

The current expressions I (z) and 1 (r) are identical to the above 
VVI       I 

two equations «vith the replacement of V  , V  , V  , and V* by 

VVI       I 
*,,.> *«,.< l.-i *nd In^* Since the vole age and current-source Green's 
IG   2G   IG       20 

functions are the sum of two exponential.« in z, the Integrals in the 

expression for voltages and currents are lntegrable for a large variety 

of current functions, I (z). 
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G.  Special Application 

Sometimes it is useful to consider a very short segment of line 

from z  , to z with a current independent of z so that 
n-1    n 

l'(z) '110) 

Then the integral contributions to voltages and currents are just the 

integral of the Green's function.  Evaluating the integrals of the Green's 

function gives the following relationships, where algebraic coincidence 

is the basis for equality between the second and third quantities: 

/ 
i * * V 

ZY(j'-L) 

v>..V  -   -7-   •w(.-.t) »>■'')  - TV«'*'1   <m) 

1 - P e 
2 

/ 
UM*!«'-«   . 

/» 

-2Yz 
1 + P e Y 

VV fz,z')dz'  = - rVV(z.z')  = — V1 (z,z')      (113) 
2G- ' ' y -2Yz  2GV '  '     y      2GV 

1 - P e 

/ 

1 + P e 
-2Vz 

1 - P e 
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Similarly, 

/v V1G(a,z )dz 
1-P .*(■'-« 
la 7 * 

P26 

/ 
I 
1G% i;,(*,«')dr'   -    -1 2 

1-P .av("'-i') 
,   , T1     /_     '» 0    V   (z,z')     (116) 

v j +   e27?rrEr ^o (z-z )  * T J
IG 

/v I 
1 1 " Pie z 

V*(z,z')dz' - -' = -TV
1
/,,']    _2„v    , 2G Y TTTT5^ 2G        TV

2G
(Z
'
Z
 

) (117) 

/* j _ p e"2V*' 

Jll(t,z')dz'    = i r  T
1
 /a ,',    fo TV ,   /, 

20 V 1 I  p .-"*■  2G T 2G(Z
'
Z
 

) (118) 

Substituting these results in the equation for voltages and current! 

in the three regions gives as typical examples for Region a . where 

z < z 
n-1 ' 

V 

P"i 
(119) 
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and,   lor Region n,  where  z        «-   z < z 
n-1      n 

N 

yV*8)^£ ZJKJ*L(:*.J + 
Z Y 

p np' 1GX '"'np' 

P=P 

DOf I .    .    i   , 

(120) 

P=P -1 z 

Z VV&-%,> * T2 [&«.■) - £c..v.>] ['» 

The equations occurring in Region n may be further simplified since 

v;G(z.z) V2G(Z'Z) (121) 

4(z'z) I
2G(Z'Z) 

(122) 

but 

IIo("*") 4    ll2G(*>z) (123; 

V
IG

(Z
'
Z)
  ' V2G(Z»Z)  • (124) 

The solution, when one segment is the entire line, is obtained by 

setting N = 1. Then z   ■ z = 0 and z    * l    * L. 
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H.  Example of Leakage from Two Apertures 

\  simple example will Illustrate the use of some of the results and 

theii  pplication to the Interpretation of measurements. A lossless 

coaxial line of length L Is terminated in its characteristic impedance 

Z = R , at both ends of the line. The coaxial line has propagation 
0   0 

constant V ■«/zY, where Z and Y are the distributed impedance and 

admittance per unit length. The line is subdivided into tluee segments 

by making divisions (see Figure 10), at z ■ z and z = z so that N = 3 
1 2 

and z    « L.    As in Figure 10,  two apertures are located in segment 2 at 
3 

z„.  and z„„,at a distance d = z  - z      apart so that z. < z_. < z„„ < z  . 
21 22' 22 21 1        21        22 2 

MOMENT 1 0 SEGMENT 2 0 
\ 

\ 
/ 

SEGMENT 3 

'21 *22 *2 
TA 7095-323 

FIGURE 10    COAXIAL CABLE WITS'. TWO APERTURES 

The transfer impedances and functions at the apertures are denoted by 

2p(Z21}   *nd Tp(Z21
)   and by Z

P
(Z22)  End Tp(Z22)* 

/,   . -Y z 
A current, I   (z)   = I e       ,   flows along the outer surface of the 

coaxial cable. The fields associated with this current leak into the 

coaxial cable through the apertures. Leakage voltages across R ter- 

minating the coaxial cable are to be determined.     The voltage at z    = 0 
V I 

is determined from the sum of V (z),   given by Eq.   (104),  and V  (z), 

given by Eq.   (106).    The voltage at z    a L is determined from the sum 
VI 3 

of V (z)  and V (z),  given by Eqs.   (104)  and (106),  respectively,  but the 
V 

voltage- and current-source Green's functions are replaced by V      and 
I 2G 

V      as well as z ■ L for region where z > z  . 
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Substituting into Eqs. (104) and (106) with Green's functions 

niven by the first expressions in Eqs. (96) and (97) yields the ex- 

pression for voltage in Region z < Z1: 

VV(z) w 1 ^Z-Z21] 

iG 

/ 
-V z 

V 
21 

+ ZP
(Z22J 

Y(z-z  ) 
1   v   22; 
— e 
2 

-V z 22 

-(VV)Z21 -(^')Z22 

VZ21Je + VZ22)e I  e 
0 

Yz 
(125) 

V*(z) VZ21)e 
•(Y+Y')Z, 21 

+ Zp(Z22)e 

-(Y+V')z 
22 

0 0 
Yz 

(126) 

Hence, 

V(«)     -    VV(z)   + VX(z) 

Ar 1 -fr+v')« 
i)z T (■    )  - Z (z    )  e 
2 ll   0 pv   21 p'   21 J 

[■ +  |Z T  (z) 1   0  p    22 " Vaa)!' 1 
•(Y+Y')Z 

22/.    Yz 
(127) 
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For the region z > z  , a similar development gives 
m 

V(z) - ifoVsi1 + Vz2i>] 
(Y-Y')Z 

21 

iZ T (z    )  + Z  (z    ) 
0 p^   L2 pv  22 I 

(Y-Y')S 
22l       -Yz 

V (128) 

Since 

z        -    z      + d 
22 21 

(129) 

Eqs.   (127)  and  (128)  become,  for z < z     , 

V(z) 'Ik* (*o, is       Op    21 
)  " VV 

-[' Z T  (z    )  - Z  (z    ) 
0 p^   22y p^   22y 

-(Y+Y')d)      V-^')Sl 
He (130) 

and for z > z    , 

V(z) J    Z T  (z„ J   + Z  (■    ) 
2)    0 pv   21 pv   2l' 

I   0 p <\J  + Z
P

(Z22) (Y-Y')d 
-YZ+(Y-Y')Z 

V 
21 

(131) 
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The implications of Eqs. (130) and (131; are clarified by consider- 

ing a special case of identical apertures and V = Y = j ^/c for air 

dielectric both outside and inside a lossless coaxial line. Also, the 

aperture is assumed to be described by one component of the magnetic- 

dipole momenv. as in circular apertures or where the magnetic field is 

predominantly along one of the orthogonal magnetic-polarizability axes. 

Substituting the transfer-impedance and function expressions from Eqs. (29) 

and (30), the leakage-voltage expressions at the tnds of the coaxial line 

become,   for z < z   , 
1 

Vz)     =- j^Me 
-v 

8nV2 -$(■ • •-) 
Yz-2Yz 

V 
21 

(132) 

and  for z > z     , 

V(z) 
2   ,2       I -Y T /   0 

4r  R \       Me    H  / 

-Yz (133) 

The polarity of V'(z) is such that the center conductor of the coaxial 

line is at a lower potential than the outer conductor. 

Since Yd ■ jwd/c «nd both Y\ and Y are real, the ratio of measured 
E      H 

voltage at the end of the coaxial cable to the current flowing on the out- 

side of the coaxial cable is, for z <  * , 

-Y \ 
I vl    mill« " 

^7 " ,24n2H'2 

-V 

We 
'V 

Pe      f~             2^d 
1 .—r vl + cos   (134) 
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and for z > z , 
m 

<MiMe 
.VHT 

„2 /2 
4'- R 

1 + 
Pe 
•IT 

E 

-V T 
H 

Me 

(135) 

Letting 

-Y_T 
Pe 

-v 
Me 

(136) 

the leakage behavior of the two Identical aperture«, from Eqs. (134) and 

(135), can be written for z < r.    as 

1*1 
I dP 

"V 
-I   » 20 log ~——- + 20 log |l - D| T 20 log / 

2 ,2 
4" R 

MHz 

+ 10 lo* ;i + en* JL d/ u ) + 
\ 75  MH7/ 

133 (137) 

and for 7 > ~ as 

20 log 
»Me 

-v 
dB * R 

+ 20 log |l + D| + 20 log /   -t 136  (138) 
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where 

-m-       ~W 

f -    frequency in MHz 
MHz 

and 

D ■ 
Pe 

-Y T 
E 

Me 
-Y T 
H 

(139) 

The relative coupling to 7 < z and z > z    is 
1 2 

z < z. 

z > z_ 

I z < z. 
1 

I 
z > z„ du 2 

= 80 log |1 - D| 

+ 10 log (l + cos —a/«« ) - *0 log |l + D| -3 
/j  MHZ 

(140) 

where the voltage and current ratios are identical because of character- 

istic resistance terminations. 

A circular hole in aa infinite thin outer conductor has a value 

fcr D giver by 

D  = - 

2 3 

4 3 
3F 

1 
2 

(141) 

The relative coupling to both sides of the holes then becomes 

n 
75  "   MHr. 

C      *    10 loa (l + cos - d/, ,)  - 9.52 
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~4 
With two circular holes of radius lü  mseparated by a distance, 

-2 
d ■ 3m, and a radius of 10  mfor the outer conductor of air-filled 

coaxial line, the coupled leakage becomes, for z < z 
I ' 

dB 
201o*}miz + l01o*{l + CO3%fmz] 217.44 (143) 

and for z > z 
2 

20 log / 

JB 
MHz 

207.92 (144) 

Equation (142) is plottei in Figure 11 for the case of d a 3m, together 

vith the case of single-hole coupling. The absolute coupling expressed 

by Eqs. (143) and (144) is plotted in Figure 12 together with the case 

of single-hole coupling. The nulling effects are caused by equal coupling 

through both holes and would not happen if the hole sizes were different. 

The absolute coupling as indicated In Figure 12 is large since the 

coupling apertures wer« in an Infinitely thin outei' shield of the coaxial 

-3 
line.  If the outer shield were 10 m thick, the attenuation factor for 

-2 
electric polarizablllty would be 9.03 * io  and for the magnetic polar- 

ization would be 1.586 x 10 , so that D would be equal to 0.284. Then 

the relative coupling to both end. of the line would be decreased by 

-2.45 dB. Also the absolute coupling for z < z is decreased by about 

18.9 dB and for z > z by about 13.8 dB.  The attenuation factors ar„ 

functions of frequency, but for these frequencies and aperture size, 

the factors may be considered to be constants. 
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IV CONCLUSIONS 

Leakage on a shielded-cable system has been treated by assuming a 

cur ?nt flowing on the exterior surface of a coaxial line.  Voltage and 

current source that depends on leakage through an aperture in the exterior 

shield is developed to excite the coaxial line.  Voltage and current ex- 

pressions along the coaxial line, terminated in arbitrary impedances, are 

derived. -,s 

Aperture polarlzabllities are considered to be empirical constants 

In the derivation, since the dimensions of apertures are impossible to 

determine.  Values of polarlzabllities are listed in. Table 1 to illustrate 

the general relationships of aperture dimensions to polarlzabllities and 

to the relative magnitudes of magnetic and electric polarlzabllities, so 

as to assist In evaluating; measured results. 

As mentioned in the introduction, the method of leakage measurement 

used on this work order was influenced by this analysis. The measurements 

are taken by allowing current to flow only across one connector, joint, 

or seam, by connecting a current source across such a Junction.  Leakage 

will be observed at the ends of the cable terminals.  Such a measurement 

procedure is consistent with the analytical expressions that have been 

presented.  It should be noted that driving the coaxial line and observing 

aperture leakage along the exterior of the shield has not been discussed, 

since exterior measurement of leakage from an aperture requires a knowl- 

edge of tne neer-zone radiation field of the aperture and the interaction 

of tne  measuring probe with this field. 
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Measurement on a cable system consisting of a shield enclosing a 

number of separate Insulated conductors will not give the same result 

as for the single concentric coaxial cable, which was analyzed, since 

the equivalent leakage voltage and current sources to each of the con- 

ductors would be different. An analysis based on multlconductor trans- 

mission line6 would also be required. Hence, allowance for differences 

between analysis and measurements should be considered in evaluating 

shielded cable systems.  Nevertheless, the difficulty in describing leaky 

apertures and the simpler analysis and interpretation possible for a co- 

axial cable Justifies the present approach for evaluating cable leakage 
effects. 
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